
DTIC ,&OPY
0- lAD

N

Technical Memorandum 15-89

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH

AND EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

Michael W. Thompson

October 1989
AMCMS Code 612716.H7000 DTIC

ELECTE

S N26190
Approved for public release;
distribution is unlimited.

U. S. ARMY HUMAN ENGINEERING LABORATORY

Aberdeen Proving Ground, Maryland

90 01 24 039

®DEC, PDP, UNIBUS, VAX, and VMS are registered trademarks of Digital Equipment
Corporation.

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.

Use of trade names in this report does not constitute an official endorsement
or approval -of the use of such commercial products.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

.2b. DECLASSIFICATION/DOWNGRADING SCHZDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Memorandum 15-89

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicablo)

Human Engineering Laboratory SLCHE

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, Maryland 21005-500i

8a. NAME OF FUNDING, SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c. ADDRESS(City, State, and ZIP Code) '10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
6.2 L162716AH7

11. TITLE (Includ. Y Classification)

Sound Efi C Irator for Use With the Cockpit Research and Experimentation
Work Load oim r (Crews)

12. PERSONAL AUTHOR(S)

Thompson, Michael W.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM TO 1989, October 54

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP sound effects generator poise generation5 I

01 03 03.12 digital sound generationI tone generation,;
14 02 synthesized sound' ____ noise (see reverse side)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

. This manual describes the sound effects generator (SEG) developed for
Digital Equipment Corpiratior? UNIBUS computers. It provides the operational
and programming information for using the SEG on DEC VAX UNIBUS computers.
The SEG can produce a variety of complex sounds through two independent
channels. Each channel is capable of producing noise and three tones with
mechanisms provided for mixing the noise and tones, controlling the amplitude
of each tone, and shaping the envelope of each channel for final output.
Being a register-oriented device, the SEG is ideal for real time appli-
cations, requiring very little computer processing time to generate and alter
sounds. The SEG is built on a single quad-height UNIBUS Foundation Module and
plugs directly into a small peripherals controller slot on the UNIBUS back
plane. Application programming is accomplished using FORTRAN callable
subroutines which initialize and alter the desired sounds. -r l"-

20, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY .LASSIFICATION

0 UNCLASSIFIED/UNLIMITED UCSAME AS RPT 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Technical Reports Office (301)278-4478 SLCHE-SS-IR

DD Form 1473, JUN 86 Previouseditonsare obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

AMCMS Code 612716.117000 Technical Memorandum 15-89

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH AND

EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

O4 0a

Anoession For
Michael W. Thompson SInS GRA&1

DTIC ?AD

Distri~bution/

October 1989 Ayailabi 'lity Codes
Avif aWi/oVr

DIst spscial.

APPROV

uman Engineering Laboratory

Approved for public release;
distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland 21005-5001

CONTENTS

INTRODUCTION ... 3

GENERAL DESCRIPTION .. 3

DETAILED DESCRIPTION .. 5

THEORY OF OPERATION ... 5

Programmable Sound Generator .. 5
M1710 UNIBUS Foundation Module ... 10

SOUND EFFECTS GENERATOR USER'S GUIDE ... 17

Create and Map Section ... 17
Register Reset ... 17
Tone Selection ... 18
Noise Selection ... 18
Mixer Selection ... 19
Amplitude Control .. 19
Envelope Generator Control .. 20
Reading PSG Registers .. 21

REFERENCES ... 23

APPENDICES

A. Envelope Shape and Cycle Patterns... 25
B. Programmable Sound Generator Register Functions 29
C. PSG Timing Diagram .. 33
D. Sound Effects Generator Programs --d Subroutines 37
E. MACRO Source Code for FORTRAN Callable Subroutines 41
F. FORTRAN Program Example .. 59

FIGURES

1. Sound Effects Generator Block Diagram ... 4
2. M 1710 UNIBUS Foundation Module ... 6
3. PSG Block Diagram .. 7
4. Address and Gating Control .. 11
5. Bus Driver and Receiver .. 12
6. PSG Control Logic ... 14
7. PSG Bi-Directional Bus .. 15
8. PSG Amplifier and Mixer .. 16

TABLES

1. Tone Register Channel Assignments ... 8
2. Mixer Control .. 9
3. Envelope Shape and Control Register ... 10

I

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH AND

EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

INTRODUCTION

A two-channel sound effects generator (SEG) has been designed and developed by the
U.S. Army Human Engineering Laboratory (USAHEL) for use with the Human Factors Research
Simulator (HFRS). Although not designed to reproduce or model any particular sound, ea.h
channel on the SEG is capable of digitally synthesizing a wide variety of complex sounds under
software control through individual noise and tone components. The SEG provides the
mechanisms for independently creating and altering the amplitude and frequency for three separate
noise and tone components for each channel. The SEG allows the noise and tones to be blended
(mixed) and shaped, producing a single complex sound with multiple elements of noise and tones.

This manual provides a general description of the sound effects generator and of the
software developed for its use. This manual is divided into two sections. The first section
provides the information necessary in understanding the SEG hardware concepts for UNIBUS
interfacing and sound generation. The second section provides the information necessary for using
the SEG software.

To understand the software presented, the reader should be familiar with the FORTRAN-
77 programming language and the Digital Equipment Corporation (DEC) VAX/VMS Operating
System (OS). To fully comprehend all the material in this manual, the reader should also he
familiar with digital electronic theory, electronic computer concepts, UNIBUS concepts, the
M 1710 UNIBUS Foundation Module, the VAX architecture, and the MACRO-Il programming
language.

Additional information pertaining to the DEC UNIBUS and the AY-3-8912 Programmable
Sound Generator can be obtained from the DEC Computer Interfacing Accessories and Logic
Handbook, the DEC VAX Hardware Handbook, the DEC PDPI 1BUS Handbook, and the
General Instruments Microelectronics Data Catalog.

GENERAL DESCRIPTION

The SEG consists of two programmable sound generators, each of which can be
independently and dynamically altered under program control. Each PSG is capable of producing
three separate channels of noise and tones. Each channel contains a mixer for blending the noise
and tones as desired. Furthermore, each channel's output can be independently shaped
(modulated) based on one of 10 distinct wave forms (see Appendix A). These wave forms control
the amplitude, period, or frequency, creating an envelope of noise or sound and may be
dynamically altered to produce a particular sound or audible effect. In addition, the three output
channels are mixed to produce a single output of sound. In effect, three separate channels of noise
or tones can be independently mixed, shaped, and controlled to produce a single complex sound.

Built on a single, quad-height module, the SEG plugs directly into a UNIBUS small
peripheral controller (SPC) slot. Described here in two sections (see Figure 1), section one
consists of the programmable sound generators that perform the actual sound generation. Section
two consists of ti.e UNIBUS controller logic and the 8-bit I/O port that allows the PSGs to
communicate with the host or computer.

3

c -0

OC J.4 -

M 0 m

co zc

w w 0 0 z (

LL L 0 W ...

C C: Q
x~ c C)(L0

0 L

C11O - I -

o1 0
& 00C

CD

e.
C 0

0 00: (D 0 N
~' i-~ 0 ~U)

0 ~ ~~ 001J1J

0f ix ~ .

0% 0

0.. 0)

N &(- 0 J)

0..................

0.............................. 0......

C C

-0-1

U')LL

> -I-

tr, 0 U

444s

For this application, the SEG is connected to a DEC VAX 11/750 computer using the VMS
operating system. It should be noted, however, that the sound effects generator is not limited to
use on the VAX 11/750 but may be installed on any computer system with the DEC UNIBUS
architecture.

DETAILED DESCRIPTION

The SEG developed by the HEL uses two General Instruments AY-3-8912 programmable
sound generator LSI circuits, a Digital Equipment Corporation (DEC) M1710 UNIBUS
foundation module, and some control and signal conditioning circuitry. All the components are
mounted on a DEC M1710 UNIBUS foundation module (see Figure 2) and connected to the
UNIBUS on a DEC VAX 11/750 minicomputer.

THEORY OF OPERATION

Programmable Sound Generator (PSG) l

The AY-3-8912 is a register-oriented device consisting of 13 read and write registers (see
Appendix B), each alterable under program control. The PSG can be subdivided into six basic
blocks for producing sound (see Figure 3). They include:

a. Tone generators that produce square wave tones at user-controlled frequencies
for each channel (A,B,C).

b. Noise generator that "produces a frequency-modulated pseudo random pulse

width square wave for noise output."'2

c. Mixer that combines the tone and noise for each output channel (A,B,C).

d. Amplitude controls that allow fixed or amplitude modulated volume control fo;
each channel (A,B,C).

e. Envelope generator that selects one of 10 envelope patterns for shaping
(modulating) the output.

f. Digital-to-Analog (D/A) converters that produce the sounds for each channel
from the data loaded in the read and write registers on the PSG.

1The information about the PSG was developed from the detailed description and specifications
pertaining to the AY-3-8912 Programmable Sound Generator. General Instruments Corporation,
"Programmable Sound Generator," Microelectronics Data Catalog (1982) pp. 5.18 to 5.25.

2General Instruments, Microelectronics Data Catalog (1982) p. 5.19.

5

~0 w0 W1O00 O 0 LI 0 0 00 C

ww

Ch.

I -.
w IN

N 00000 0 0 100

NN
(A

N 4 - 4 Q

0 w
C. 0

u40

W= w

Cvi C4 C) x0

x- -

MC WWI)

4. '=2-

..........

C.W

04 (Y)Q LX 6

0. 0 0

000

zz

00

iEl
0 w 0

0 cCL

Vw

! j w w
z L 0 :-

w w z w

7

Tone Control

There are six tone generator control registers, Register 0 (RO) through Register 5
(R5), that control the frequencies for the three output channels (A, B, and C) that produce tones.
Each channel has two registers associated with it. The frequency for each channel is determined
by the 8-bit count (0 to 255) loaded in the first register called the fine tune register and the 4-bit
count (0 to 15) loaded in the second register called coarse tune register. Combined, the registers
produce a 12-bit value used to divide the basic clock frequency of 87.5 KHz by the value
contained in the corresponding registers for each channel (see Table 1). The 8-bit fine tune register
contains the Least Significant Bits (LSB) and is used for making fine frequency adjustments of the
tone. The four-bit coarse tune register contains the Most Significant Bits (MSB) and is used for
making coarse frequency adjustments of the tone.

Table 1

Tone Register Channel Assignments

Coarse Tune Fine Tune
Channel Register Register

A RI RO
B R3 R2
C R5 R4

Noise Generator Control

A single noise generator control register, Register 6 (R6), controls the frequency of
the noise source. The noise frequency component is determined by the 5-bit value (range 0 to 31)
loaded in R6 and is derived by dividing the basic noise clock frequency (87.5 KHz) by the value
loaded in R6. Since there is only one noise generator control register, the noise frequency
component on each channel will be the same for all three channels, but the amplitude of each may
be individually controlled (see Amplitude Control section).

Mixer Control

A single mixer control register, Register 7 (R7), controls the tone and noise mixing
for each of the three analog output channels on each PSG. The mixer can combine either, neither,
or both tone and noise for each channel. The mixing is determined by the 6-bit value (range 0 to
63) loaded in R7. Bit 0 (BO), bit 1 (B1), and bit 2 (B2) designate which channels are enabled or
disabled (channels A, B, and C) for tone, whereas, bit 3 (B3), bit 4 (B4.,, and bit 5 (B5) designate
which channels are enabled or disabled for noise (see Table 2). To enable a channel requires that
the appropriate bit(s) be reset or off.

8

Table 2

Mixer Control

Function NOISE ENABLE TONE ENABLE

Bit Number B5 B4 B3 B2 B1 BO
Channel C B A C B A

Amplitude Control

Three 5-bit ampiitude control registers, Register 8 (R8), Register 9 (R9), and
Register 10 (RIO), control the amplitude level and select the mode for each output channel (A, B,
and C). Bit 4 in each amplitude control register designates whether the amplitude will be fixed (bit
4 = 0) or if the amplitude will be modulated (bit 4 = 1). When the mode is "fixed," bits 0 through
3 provide 16 (0 to 15) discrete volume levels with 0 being lowest level (off) and 15 being the
highest. In "modulated" mode, the volume is controlled according to the shape and frequency
produced by the envelope generator (see Envelope Generator Control section).

Envelope Generator Control

The envelope generator control section makes it possible to vary the envelope period
or frequency as well as select or change the envelope shape when modulating the output channels
(see Amplitude Control section).

Envelupe Period Control

Two 8-bit envelope period control registers, Register 14 (R14) and register
15 (R15), control the period or frequency of the selected envelope pattern. R14, the envelope fine
tune register, represents the LSB and provides the envelope period fine tuning adjustments. The
envelope coarse tune register, R15, represents the MSB and provides the envelope period coarse
tuning adjustments. Internally combined, the resulting 16-bit value is used to divide the
fundamental noise clock frequency (5.47 KHz) and derive the envelope period or frequency.

Envelope Shape and Cycle Control

A single 4-bit envelope shape and cycle control register, Register 16 (R16),
determines the envelope shape and cycle. Bits 0 through 3 are used to produce any one of 10
envelope shapes (see Appendix A). Each bit has a specific control function in the envelope
generator (see Table 3) which causes one of the envelope shapes to be produced.

9

Table 3

Envelope Shape and Control Register

Bit Function

0 HOLD
1 ALTERNATE
2 ATTACK
3 CONTINUE

Digital-to-Analog (D/A) Converters

The final step in generating sounds is transforming the digital data, as represented
by the PSG registers, into the actual analog sound. This occurs in the D/A converter, where each
PSG is capable of generating as many as three separate channels of sounds. Each channel is
independently controlled and -may contain a noise component or tone component as determined by
the register data.

M1710 UNIBUS Foundation Module

The UNIBUS foundation module provides a general purpose, single-board interfacing
module that supplies the basic interfacing circuitry when configuring custom devices to computers
using the DEC UNIBUS architecture. The module provides the electronic circuitry for device
address selection, interrupt generation, and data bus receiving and driving. Furthermore, the
module can accommodate numerous 14-pin and 16-pin dul-in-line-packages (DIP) as well as
some DIP to as many as 40 pins, providing the basic building block for custom interfaces.

Address Selection

The SEG responds to UNIBUS addresses 167724 thiough 167737 (octal). The
execution of a data transfer instruction causes the appropriate address bits (AOO through A17) and
the control bits (CO and C01) to be placed on the UNIBUS (see timing diagram in Appendix C).
Each device on the UNIBUS receives the address and control bits and begins the device address
decoding. After a short interval dc2ay for deskew, MSYN L is asserted by the master device or in
this case the central processing unit (CPU). Each device on the UNIBUS receives MSYN L,
completes its device address decoding, whereupon the device with the proper address responds by
asserting DEVICE ENABLE L.

PSG Selection and Commands

DEVICE ENABLE L allows further decoding of address bits AO1 through A04 by
the 4- to 16-line decoder (see Figure 4). This causes the appropriate PSG to be selected and the
proper PSG command to be initiated (see timing diagram in Appendix C): LATCH PSG, READ
PSG, or WRITE PSG.

LATCH PSG selects one of the 13 registers associated with each PSG. SEL 30
(LATCH PSG1) selects the register specified by the data lines BUS DOO through BUS D15 (see
Figure 5) for PSG1 by initiating the proper control signals BC2, BC1, BDIR, and SEL PSG1 (see
Figure 4). SEL 36 (LATCH PSG2) initiates the same action for PSG2 (see Figure 4).

10

04 0

z C L

m Z 4 z

0) z -- 3:

o z V) 0A IA -

0: 1

'0 J COa

C C0 a w~

Z z z z 2-z C
t

LL 0 0 c L 0

-*.7 5. 0 L0

T. w

000N (D0 LZ

Ix-okm~ - j jo C.~4J. 0*

wWI

00-

ow Co

.- ,.s- z j jjj4
0

w O-4
0: N N .4 l) '4 If4 .4flN 4 N -

w' 0 -' L> 0 0 0 0 0 0 0 N

z -iJ j _ 1 J J J- i -

(A~ 0-c.z 0 D 0

- 0-0
000

(A
D AALAD D D

m11

o w
z

0 0
0 Lw

Z(0 : 0 W

~W

wo 0 W.z

Zb C *. "

*.0Z Z~4
Z W WZ

a w wi x T r 0 z n- w 0 D (

j J J ! -i j j j ~j j -1 j ~j j -i -i- -

LA (t) C4 -4 0 O D M V M N 0
-.4 -4-- -40 0 0 0 0000 0

.4 O ((r, ko L4) (() Nf 0~(~ 44 U) U 4

0 -4 .-4 4 -4 -4 -4 -4 -4 -4 -4 OON ON

9 * * 0 4* * 4p * 0 * * *

M 1 T I 1 I: : 3I 3I I X 2: 3: 2 M
4.)

U) IT M4 N -N 0 T' r- '0 in v (w) N~ -4 0 .
-4--4 .4 -4 -4 00 0 0 0 00 0.)

I- - - -

C> 0 0 00 0 0 000 0 00

0 ~w

N 0 N o' r- b tr It N (. -7
ON 001.0, O 0 co 0) 0 0 0 -

0 0

IA N~
c

12

READ PSG allows the user to examine the contents of a PSG register previously
selected by the LATCH PSG command. SEL 24 (READ PSG1) performs a register read of the
register previously selected by initiating the proper control signals BC2, BC1, BDIR, and SEL
PSG1 (see Figure 4) for PSG1. SEL 24 (READ PSG2) initiates the same action for PSG2.

WRITE PSG allows the user to deposit a value into a PSG register previously
selected by the LATCH PSG command. SEL 26 (WRITE PSG1) deposits a value into the register
previously selected by initiating the proper control signals BC2, BC1, BDIR, and SEL PSG1 (see
Figure 4) for PSG2. SEL 34 (WRITE PSG2) initiates the same action for PSG2.

Gating Control

UNIBUS control lines COO and C01 (see Figure 4) designate the type of data
transaction, data-in (DATI) or data-out (DATO), with respect to the master device.

DATI transactions (COO = 0 and C01 = 1) cause data transfers from the PSG
register selected to the address specified by the processor. A DATI transaction occurs when a
READ PSG command is executed by the CPU.

DATO transactions (COO = 1 and C01 = 0) cause data transfers from an address
specified by the processor to the PSG register selected. A DATO transaction occurs when a
LATCH PSG or WRITE PSG command is executed by the CPU.

Data Bus Interface

The data bus interface contains the UNIBUS drivers, receivers, and 8-bit I/O PORT
for establishing the two-way data path between the PSGs and the CPU. Data are transferred from
the PSG to the CPU (READ PSG) by way of the PSG Bi-directional Bus (see Figure 1). Data for
the CPU are placed on input lines INOO through IN07 (see Figure 5), whereupon assertion of
DRIVER ENBL L (see Figure 6) signal causes the data to be placed on the UNIBUS data lines for
transfer to the CPU.

Data are transferred from the CPU to the PSG by way of UNIBUS data lines D15
through DOO and output lines OUT 15 through OUT 00 (see Figure 5). Data placed on data lines
D15 through DOO are passed to the output line OUT 15 through OUT 00. These in turn are passed
to the input lines of the 8-bit I/O PORT (see Figure 7) which places the data on the PSG
Bi-directional Bus. The data are then available for processing by the selected PSG for either
register selection (LATCH PSG) or data transfer to the selected register (WRITE PSG).

Amplifier and Mixer

The amplifier and mixer section of the SEG contains the signal conditioning,
driving, and final mixing (adder) circuits for the SEG (see Figure 8). Each PSG output channel is
connected to a signal driver whose output feeds an adder which combines the three output channels
of each PSG. The output of the adder then feeds the signal conditioning circuit consisting of a
voltage divider and AC coupling capacitor for final output.

13

WI

z
w

o0

C) C)CN

co 0 0 . a. m

0i 0 i
wr- w) wr-

U) _j In -4

-4 64

C'J~ ~ wrj) T 4 ~
In 0- N %D4~ In 'b 0i Ni)- 7 -

w w w r'- 0.

11-4 -4
-4 4N04 w N C

o 0 D 0ID . 0 C) D 0cot

LJIw W - w w w - CLCj

W~b14

z
0

I-

0. C

(D(D (D -300d 0
000 000 zzzz

z zz zz zccc c c

(D 0 (D 0

000 00000000 00 0000

r- 'D)vm N -4 (-4 c,4 0 N -f k.#'-

cooooooo~ eDDDOOo Wcoo

10

C/)

.- I0

IX, f- kv V). 'T (o - a
00000000 cq

Coc 000CDDD (O00) I - I

N0 0

(i~ZIZ ZIZ .4N 0*(L r- 1o V v mN -4o + I

w DDD0nnDD C) (f) z-4

\ W'
0 0

0.4 0~

-04

a~NY

N4m(1 N 1* C N N

-IECI .4r 4 NN N11E N'JE #

1+ + ++ 1+ 1+

-4 NL

co N
-~ N

X 0I

0 0 0 0 0 0
JJ ai J

z Z Z - z
C CCC

16

SOUND EFFECTS GENERATOR USER'S GUIDE

Software has been developed for use with the sound effects generator (SEG). The
software provides easy access to the SEG with inclusion of FORTRAN callable MACRO
subroutines (see Appendix D). The Macro source listings for each subroutine are provided in
Appendix E and a working FORTRAN example program in Appendix F. Using the subroutines
requires adhering to the proper calling format in your application program. Then you must link
those subroutines with your application program. The SEG object files required for linking are on
the VAX 1 1f150 in the directory DRAO:[SEG.OBJ].

Two important concepts should be noted pertaining to the SEG. First, the sounds
produced by the programmable sound getnerators (PSG) on the SEG are initiated and changed by
simply performing a series of register loads. Therefore, each functional area used in producing
sounds (tone, noise, mixing, amplitude, and envelope generation) can be related to a specific
register within each PSG.

Second, once a sound has been generated by the PSG in the modulated mode, that sound is
sustained without further intervention by the controlling process. Since the PSG is a register-
oriented device, it only responds to changes made in its internal registers. This feature reduces the
overhead required by any process when interacting with the SEG since generating or changing a
particular sound requires setting only a few data registers while repetitive sounds require no
intervention.

All the subroutines used to access the SEG require mapping to a global page frame section.
This section should have been created before running any software using the PSG software. The
procedure for installing the page frame section is described in the following "Create and Map"
section. One final note: all humeric values should be declared as integers.

Create and Map Section

For the subroutines to work, a page frame section must be created for the SEG so that
users are able to map to the section created for the PSG. In essence, the process creates a group
global section called PSGSEC, which allows processes to associate (map) a section of its address
space with the specific physical device addresses of the SEG. The page frame section can be
installed by running the program:

$RUN PSGMAP

The process requires the following privileges:

PFNMAP to create a page frame section.

PRMGBL to create a permanent global section.

Register Reset

A subroutine has been developed for FORTRAN inclusion that will reset or clear all the
registers (0 through 13) for either programmable sound generator (PSG) or both on the SEG. The
calling format is:

CALL PSGRESET (PSGNUM)

17

In which the PSG_NUM argument has the following meaning:

PSG_NUM = 0 reset both PSG 1 and PSG2.
PSG_NUM = 1 reset PSG1.
PSG_NUM = 2 reset PSG2.

Tone Selection

Each PSG on the SEG has three separate channels that may be programmed with a different
tone. Associated with each channel are two registers for determining the tone frequency. The first
register represents the LSB, bits 0 through 7, and is used for fine tuning the tone frequency. The
second register represents the MSB, bits 8 through 11, and is used for coarse tuning the tone
frequency. Combined, they produce a 12-bit number, which is used to divide the fundamental tone
clock frequency (87.5 KHz) down to the tonal frequency required.

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSG-TONE (PSGNUM, CHANNUM, COARSEADJ, FINEADJ)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified, 1 or 2.

CHANNUM specifies which channel (1, 2, or 3) for setting the tonal frequency.

COARSEADJ is the value of bits 8 through 11 for the coarse frequency
adjustments. The range is 0 to 15.

FINEADJ is the value of bits 0 through 7 for the fine frequency adjustments.
The range is 0 to 255.

Noise Selection

Each PSG on the SEG has three channels that may be programmed with noise. The
frequency content of the noise for all channels is determined by this one register, the noise
generator control register. Again, as with the tone generation, the frequency content is determined
by dividing the fundamental clock frequency (87.5 KHz) by the value of the 5-bit noise generation
control register.

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSGNOISE (PSGNUM, NOISEFREQ)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified and has a value of I or 2.

NOISEFREQ is the value representing bits 0 through 4 used for calculating the
noise frequency content and has a value ranging from 0 to 31.

18

Mixer Selection

Each PSG on the SEG has a mixer that will blend the tone and noise for each channel on
the PSG. Blending or mixing is controlled by the mixer control register, an 8-bit register, of
which the lower 6 bits are used for mixing the tone and noise. This is accomplished by
constructing a bit mask in the mixer control register, in which bit 0 through bit 2 form the tone
mixer mask, and bit 3 through bit 5 form the noise mixer mask for channels 1, 2, and 3. Mixing is
disabled when the respective bit for tone or noise is set or enabled when the respective bit for tone
or noise is reset. For example, if bit 0 is set, there is no tone on channel 1, or if bit 3 is set, there
is no noise on channel 1. The same convention is followed for channels 2 and 3.

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSGMIXER (PSGLNUM, MIXER.MASK)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified and has a value of I or 2.

MIXERMASK is the value representing the mixer mask, bits 0 through 5, enabling
or disabling tone and noise mixing for each channel. The value
range is 0 through 63.

Amplitude Control

Each PSG on the SEG has three channels that may be programmed independently for
amplitude (volume). The amplitude of each channel is determined by the 5-bit value in their
respective amplitude control register. Each amplitude control register has two modes of operation
associated with it: a fixed mode and a modulated mode. The mode is determined by bit 5, the"mode" select bit. In the fixed mode, bit 5 ("mode" select) is reset, and bit 0 through bit 4
determine one of 16 discrete steps for volume control where 0 is off and 15 is maximum. In the
modulated mode, bit 5 ("mode" select) is set, and bit 0 through bit 5 are ignored. The volume is
then modulated as determined by the envelope generator described in the next section "Envelope
Generator Control."

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSGAMP (PSGNUM, CHANNUM, .AMPLITUDE)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified, and has the value of I or 2.

CHANNUM specifies the channel (1, 2, or 3) for volume setting or modulation
selection.

AMPLITUDE is the value representing bits 0 through bit 5 for setting the volume
level. The value is 16 for modulation or ranges between 0 and 15 for
fixed volumes.

19

Envelope Generator Control

When in modulated mode (see "Amplitude Control" section), "mode" select bit is set, and
each PSG output on the SEG can be controlled by the envelope generator. The envelope generator
allows the selection of a particular wave form pattern (see Appendix A) and allows for setting the
period of the wave form. The pattern is used to create the envelope shape for the desired output.

Envelope Period Control

The envelope period control determines the frequency or period of the envelope
pattern. Associated with the envelope period are two registers for determining the envelope period.
The first register represents the LSB, bit 0 through bit 7, and is called the envelope fine tune
register. The second register represents the MSB, bits 8 through bit 15, and is called the envelope
coarse tune register. Combined, they produce a 16-bit value, which is used to divide the envelope
clock frequency of 5.47 KHz down to the envelope period desired.

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSGENVGEN (PSGNUM, COARSEVAL, FINE-VAL)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified and has a value of 1 or 2.

COARSEVAL is the value representing bit 8 through bit 15 in the envelope coarse
tune adjustment register. The value range is from 0 to 255.

FINEVAL is the value representing bit 0 through bit 7 in the envelope fine tune
adjustment register. The value range is from 0 to 255.

Envelope Shape and Cycle Control

The envelope shape and cycle control determines the envelope shape and defines the
envelope as a single or repetitive (cycling) event. A 4-bit register, called the envelope shape and
cycle control register, selects one of 10 different wave forms (see Appendix A). The wave form
selected is used to create the output shape (envelope), which becomes a single burst or repetitive
bursts of noise or tones.

The subroutine developed for FORTRAN inclusion has the following format:

CALL PSGENVSHAPE (PSGNUM, SHAPEVAL)

The arguments have the following significance:

PSGNUM specifies which PSG will be modified and has a value of I or 2.

SHAPEVAL is the value representing bit 0 through bit 3 for the envelope shape
and cycle control register. The value range is from 0 to 15 (see
Appendix A for patterns).

20

Reading PSG Registers

It is possible to examine the contents of any PSG register. A subroutine has been
developed for FORTRAN inclusion that will read the contents of the specified register. The calling
format is

CALL PSGREAD (PSGLNUM, REGNUM, REG-VAL)

In which the arguments have the following significance:

PSGNUM specifies which PSG will be modified and has a value of 1 or 2.

REGNUM is the number of the register to be read (0 to 13). The range is from
0 to 13 (see Appendix B for the number of the register functions).

REG_VAL is the value of the specified register.

21

REFERENCES

Digital Equipment Corporation. (1978). Computer interfacing access," s and logc handbook,.
Maynard, MA: Digital Equipment Corporation.

Digital Equipment Corporation. (1979). PDP1 Ibus handbook. Maynard, MA: Digital Equipment
Corporation.

Digital Equipment Corporation. (1982). VAX hardware handbook. Maynard, MA: Digital
Equipment Corporation.

General Instrument Corporation. (1982). Microelectronics data catalog. Hicksville, NY: General
Instrument Corporation.

23

APPENDIX A

ENVELOPE SHAPE AND CYCLE PATTERNS

25

ENVELOPE SHAPE AND CYCLE PATITERNS 3

R13 bits

B0B1 B2 B3
O 0 x x .

0 0 x 0x
0 1 x x

1000

1 0 01

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1V/

1 1 1 0 e v 'N/

1 1 1

epj ep is the envelope period

3 General Instruments Corporation. Programmable Sound Generator,"
Microelectronics Data Catalog (Hi, ville, N.Y. 1982) p. 5.22.

27

APPENDIX B

PROGRAMMABLE SOUND GENERATOR REGISTER FUNCTIONS

29

PROGRAMABLE SOUND GENERATOR REGISTER FUNCTIONS

Register Function

RO Channel A Tone Period (fine)
RI Channel A Tone Period (coarse)
R2 Channel B Tone Period (fine)
R3 Channel B Tone Period (coarse)
R4 Channel C Tone Period (fine)
R5 Channel C Tone Period (coarse)
R6 Noise Period
R7 Mixer
R8 Channel A Amplitude Control
R9 Channel B Amplitude Control
RIO Channel C Amplitude Control
Ri1 Envelope Period (fine)
R12 Envelope Period (coarse)
R13 Envelope Shape and Cycle Control

31

APPENDIX C

PSG TIMING DIAGRAM

33

PSG TIMING DIAGRAM

..o , , •

LATCH* ADDRESS .

D~d~lCEEh BL X" ' 6'00 NS'. . ..
DEVI CE ENABLE

.... .DATA. 700 NS

BC2 .(+5U)

BDIR". ...

SELPSG. Ai)."
'. #' ' . - ---.\.N ." " -80 Ns" - i Z.
SSYN, AO .NS ~ . 0N

.. 14RITE 'PSG
DEV ICE ENABLE* \..,... _600 .NS

DATA' 7-.70~ N
BC2 'r'45V)

Btll •OV ..H
BOI (0-)-

SEL PSO (AV)) "

SSY. 400 N4s -. 280 NS . ,

READ PSG .

DEV ICE EIIABLE t.'..

DATA X- 700 NS Y

802 (+5U)

RDIR (OU)

SEL PSG (A). I .

SSYN NS.35

35

APPENDIX D

SOUND EFFECTS GENERATOR PROGRAMS AND SUBROUTINES

37

SOUND EFFECTS GENERATOR PROGRAMS AND SUBROUTINES

FORTRAN PROGRAMS

PSOMAP - creates the global page frame section for tht, Sound Effects Generator.

FORTRAN SUBROUTINES

Subroutine Arguments

PSG-RESET (psgjium)
PSG-TONE (psg_ num, chan..num, coarse-adj, fine...adj)
PSG-NOISE (psg~num, noisejreq)
PSGMIXER (psg~jium, mixer..mask)
PSG-AMP (psg..num, chan num, amplitude)
PS0_ENV_-GEN (psgnum, coarse..yal, fine-yal)
PSGENV_ SHAPE (psg..num, shape)
P50_READ (psg-..num, reg...num, reg~yalue)

39

APPENDIX E

MACRO SOURCE CODE FOR FORTRAN CALLABLE SUBROUTINES

41

ORA 1: [TtIIOMPSON.PSGJPSGMAP.MAR;64

This is a FORTRAN callable macro subroutine that returns the
Creates the map section PAGE FRAME MAP (PFN).
Programmable Sound Generator (PSG) UNIBUS address:

register offset address

READ PSG1 A0 A0767724 AXIF7EA3
WRITE PSG I A02 A0767726
LATCH PSGl A04 A0767730

READ PSG1 A06 A0767732
WRITE PSG1 A010 A0767734
LATCH PSG1 A012 A0767736

$CRMPSC -- Create and Map Section:

see 'SYSTEM SERVICES, I/0'in the memory management services section.
FORMAT (MACRO): $CRMPSC [inadr],[retadr],[acmode],[flags],

[gsdnam],[ident],[relpag],[chan],
; * [pagcnt],fvbn],[protl,[pfc]

Arguments required for creating the page frame section:

inadr - Starting and ending virtual addresses into which the
section is to be mapped. If the starting and ending
addresses are the same, a single page is mapped.

retadr- Starting and ending virtual addresses into which the section
was actually mapped.

flags - Flag mask specifying the type of section to be mapped or
created. (#SEC$M_WRT! SEC$M_PFNMAP)

pagcnt- Number of pages in the section. Cannot equal zero for physical
page frame.

vbn - Specifies the page frame number where the section begins in
memory. ((base addr. + unibus offset) / bytes per page) where

base addr. = unibus base addr. UBO = AX 20100000
unibus offset = force stick begins at AO 767724
bytes per page = 512

USE BYTE ADDRESSING MODE:

UBABASE = @RETRANGE =AX 2013EFD4

READ PSG1 = @RETRANGE = AX 2013EFD4
WRITE PSG1 = @RETRANGE+2 = AX 2013EFD6
LATCH PSG1 = @RETRANGE+4 = AX 2013EFD8

43

READ PSG2 = @RETRANGE+6 =AX 2013EFDA
WRITE PSG2 =@RETRANGE+8 = AX 2013EFDC
LATCH PSG2 =@RETRANGE+1O= AX 2013EFDD

The following assign should also work for VBN if a liteial (#) is
implied:

VBN1 = <AX20100i000~ + A0767724> @-9

Create and map page frame section.

.TITLE PSGMAP

.PSECT MAPSECTION ,NOEXE,WRT,RD,PIC

MAPRANGE:
.LONG 1024
.LONG 1024

RETRANGE:
.BLKL 2 ;reserve two longwords

REMAINDER:
.LONG 468

LATCHREG:
.LONG 0

REGVAL:
.LONG 0

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$1O750DEF

.PSECT CODE ,EXE,NOWRT

.ENTRY PSGMAP AM<>

VBN1 = <1O750$AL.,..UB0SP+AO767724>@-9

$CRMPSCS -
INADR = MAPRANGE,-
RETADR = RETRANGE,
FLAGS = #SEC$M...WRT!SEC$M_PFNMAP! SEC$MEXPREG,-
PAGCNT = #1,
VBN = #<IO750$AL...UB0SP+AO767724>@-9

CLRL R5
CLRL R6

START:
ADDL3 REMAINDER,RETRANGE,R3; get first address

44

MOVAB 4[R3],R4 ; latch ADDR,
MOVAB 2[R3],R5 ; write ADDR
MOVL, #11,R2

LATCH:
MOVB R2,(R4) ; select register
MOVB R2,LATCH_-REG
ERW LATCH

WRITE:
MOVB R2,(R5) ; et selected reg.
ADDB2 #l,R2
BRW WRITE

RA:MOVB (R3),REG_ VAL b et data from latched regiSL-er
SUBB3 #15,R2,R1
BRW READ

BLEQ LATCH
BRW PSG1

DONE:
$EXITS
.END PSGMAP

DRAI :[THOMPSON.PSG]PSG _AMP.MAR;7

AUTHOR: MICHAEL W. THOMPSON
;DATE : 17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG) amplitude control.
registers 10, 11, 12 for channels A,B,C, respectively.

This is a FORTRAN callable macro subroutine that:

Calling format: CALL PSG_AMP (PSGNUM,CHAN_NUM,AMPLITUDE)

Selects the PSG1I or PSG2 : PSGNUM (I or 2)
Selects the channel :CHANNUM (1,2,3)
Set the amplitude for channel
selected. :AMPLITUDE

PSG UNIBUS address:
register offset address

READ PSGl AOO A0767724 AX1F7EA3
WRITE PSG1I A02 A0767726
LATCH P501. A04 A0767730

READ PSGI A06 A0767732
WRITE PSG1I AO1O A0767734
LATCH PSG1I A012 A076 7736

45

.TITLE P_-SGAMP

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$1O750DEF

.PSECT MAP_-SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:

.LONG 1024
.LONG 1024

RETRANGE:
.BLKL 2 ;reserve two longwords

.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:

.LONG 468
PSG&NUM:

.LONG 1
CHANNUM:

.LONG 0
AMPLITUDE:

.LONG 3
NAME:

.ASCID IPSGSEC/

.PSECT CODE,EXE,NOWRT

.ENTRY PSG_AMP, AM<R3,R4,R5,IV>

;MAP to permanent global page frame section (110 page)
$MGBLSCS -

INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M-WRT!SEC$MEXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ; put PSG 1 base address in R3

MOVL @4(AP),PSG...NUM ;get PSG number
MOVL, @8(AP),CHAN-NUM ;get CHANNEL number
MOVL, @ 12(AP),AMPLITUDE; get CHANNEL number

CMPB #2,PSGNUM ;sel PSG1 or PSG2
BEQL PSG2

PS G1:
MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2[R3],R5 ; put write ADDR in R5
BRW CALC_-CHAN

PSG2:
MOVAB 1011R3],R4 ; put latch ADDR in R4
MOVAB 8[R3],R5 ; put write ADDR in R5

46

CALC_CHAN:
CMPB #1,CHANNUM
BEQL CHAN_A
CMPB #2,CHANNUM
BEQL CHAN_B

CHANC:
MOVB #P012,CHANNUM
BRW SETAMPCHANLB:.
MOVB #AOlI,CHANNUM
BRW SETAMP

CHANA:
MOVB #AO10,CHANNUM

SET_ AMP: C
MOVB CHAN_NUM,(R4) ; latch AMI DE register
MOVB AMPLITUDE,(R5) ; set amplitude register

DONE:
RET
.END

$EXIT_S
END PSGAMP

DRA1 :[THOMPSON.PSG]PSGENVGEN.MAR;g

AUTHOR: MICHAEL W. THOMPSON
;DATE : 17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG) envelope generator
control register 13 (fine tune) & register 14 (coarse tune).

This is a FORTRAN callable macro subroutine that:

Calling format:
CALL PSGENVGEN (PSG.NUM,COURSEVALFINEVAL)

Selects the PSG1 or PSG2 : PSGNUM (0 or 2)
Sets the course adjust tune value: COURSE (AO 0 THRU AO 377)
Sets the fine adjust tune value : FINE (00 0 thru AO 377)

PSG UNIBUS address:
register offset address

READ PSG1 AO0 A0767724 AX1F7EA3
WRITE PSG1 A02 A0767726
LATCH PSG1 A04 A0767730

READ PSG1 A06 A0767732
WRITE PSG1 A010 A0767734
LATCH PSG1 A012 A0767736

47

.TITLE P_-S_ GENVGEN

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$1O750DEF

ARNEPSECT MAPSECTION,NOEXE,WRT,RD,PIC
MAPRNG 102

.LONG 1024

RETRANGE:
.BLKL 2 ;reserve two longwords

.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:

.LONG 468
LATCHREG:

.LONG 0
REGVAL:

.LONG 0
PSGNUM:

.LONG 1
COARSE:

.LONG 3
FINE: ~ ''~

.LONG 7

.ASCID /PSGSEC/

' PSECT, "C0O6tNOqw~t
.ENTRY -'PSG ~ENV.:--GEN, I iM<R3,R4,R5,IV>

$MGBAJD MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M WRT!SEC$MEXPREG,-

BEGIN:
ADDL3 RE94AINDP-R,RETRANGE,R3 ;put PSG1I base address in R3

MOVL, @4(AP),PSG-NUM ;get PSG number
MOYL, @8(AP),COARSE ;get COARSE value
MOVL, @ 12(AP),FINE ";get FINE value

CMPB #2,PS15 "'N'TiM ;sel PSG1 or PSG2
BEQL PS02

PSG 1:
MOVAB 4[R3],R4 ; latWhADDR
MOVAB 2[R3],R5 ; wtite AIDR
BRW LATCH

48

PSG2:
MOVAB 1QLR3],R4 ; latch ADDR
MOVAB 8[R3],R5 ;Write AI5DR'

LATCH:
MOYB #A013,(R4)
MOVB FINE,(R5)
MOVB #A014,(R4)
MOVB COARSE,(R5)

DONE:
BRW LATCH
RET
.END

$EXIT_-S
.END PSGENVGEN

DRAl :[THOMPSON.PSG]PSGENVSHAPE.MAR;8

AUTHOR: MICHAEL W. THOMPSON
;DATE :17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG) envelope shape and cycle
control (register 15).

This is a FORTRAN callable macro subroutine that:

Calling format: CALL PSG_ ENV_-SHAPE (PSQ.NUMSHAPE VAL)

Selects the PSG1I or PSG2 :PSG_NUM (1 or 2)
Selects the shape control :SHAPE,_VAL (1 thrU AO 17)

Shape control bit functions:
BO -Hold
B4 -Alternate
B2 -Attack
B3 -Continue

PSG UNIBUS address:
register offset address

READ PSG1 AOO A0767724 AXlF77EA3
WRITE PSG1. A02 A0767726
LATCH PSG1 A04 A0767730

READ PSG 1 A06 A0767732
WRITE PSG1I AO1O A0767734
LATCH PSG1I A012 A0767736

49

.TITLE PSGNVHP

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$IO75ODEF

*PSECT MAP_-SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:

.LONG 1024

.LONG 1024
RETRANGE:

.BLKL 2 ;reserve two longwords

.PSECI' DATA,NOEXEWRT,RD,PIC
REMAINDER:

.LONG 468
PSGNUM:

.LONG 1
SHAPEVAL:

.LONG 0
NAME:

.ASCID /PSGSEG/

;***BEGIN PSG-NOISE *****
.PSECT CODE,EXE,NOWRT
.ENTRY PSG_ENV_SHAPE, AM<R3,R4,R5,IV>

$MGBLSCS -

INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SE$MJ WRT 1SEC$MEXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ; put PSGl1 base address in R3

MOVI, @4(AP),PSG-NUM ; get PSG number
MOVI, @8(AP),SHAPE.VAL ; get shape control value

CMPB #2,PSGNUM ;sel PSG1 or PSG2
BEQL PSG2

PSG 1:
MOVAB 411R3,R4 ; put latch ADDR in R4
MOVAB 2[R3],R5 ; put write ADDR in R5
BRW LATCH

PSG2:
MOVAB 10[R31,R4 ; put latch ADDR in R4
MOVAB 8[R31,R5 ; put write ADDR in R5

50

LATCH:
MOVB #AO15,(R4) ; select register 15 (envelope shape control)
MOVB SHAPEVAL,(R5)

DONE:

BRW LATCH
RET
.END

$EXIT_S

.END PSGENV SHAPE

DRA 1:[THOMPSON.PSG]PSGMAP.MAR;12

PSGMAP.MAR

This is a FORTRAN callable macro subroutine
Creates a global map section PAGE FRAME MAP (PFN).
This allows users to map to the physical addresses associated
with the programmable sound generators.

Calling format: CALL PSG_MAP

Programmable Sound Generator (PSG) UNIBUS address:
register offset address

READ PSG1 A0 A0767724 AX1F7EA3
WRITE PSG 1 A02 A0767726
LATCH PSG 1 A04 A0767730

READ PSG1 A06 A0767732
WRITE PSG1 A010 A0767734
LATCH PSG1 A012 A0767736

$CRMPSC -- Create and Map Section system service

see 'SYSTEM SERVICES, I/0'in the memory management services section.

;FORMAT (MACRO): $CRMPCS [inadr],[retadr],[acmode],[flags],
[gsdnam],[ident],[relpag],[chan],
[pagcnt],[vbn],[prot],[pfc]

Arguments required for creating the page frame section:

inadr - Starting and ending virtual addresses into which the
section is to be mapped. If the starting and ending
addresses are the same, a single page is mapped.

51

retadr- Starting and ending virtual addresses into which the section
was actually mapped.

flags - Flag mask specifying the type of section to be mapped or
created. (#SEC$M_.WRT!SEC$M_PFNMAP)

pagcnt- Number of pages in the section. Cannot equal zero for physical
page frame.

vbn - Specifies the page frame number where the section begins in
memory. ((base addr. + unibus offset) / bytes per page) where

base addr. = unibus base addr. UBO = AX 20100000
unibus offset = force stick begins at AO 767724
bytes per page = 512

USE BYTE ADDRESSING MODE:

UBABASE = @RETRANGE = AX 2013EFD4

READ PSG 1 = @RETRANGE = AX 2013EFD4
WRITE PSG1 = @RETRANGE+2 = AX 2013EFD6
LATCH PSG1l =@RETRANGE+4 = AX 2013EFD8

READ PSG2 =@RETRANGE+6 = AX 2013EFDA
WRITE PSG2 =@RETRANGE+8 = AX 2013EFDC
LATCH PSG2 =@RETRANGE+10= AX 2013EFDD

The following assign should also work for VBN if a literal (#) is
implied:

VBNl = <AX20100000i~ + A0767724> @-9

.TITLE PSGMAP

.PSECT MAPSECTION ,NOEXE,WRT,RD,PIC

MAPRANGE:
.LONG 1024
.LONG 1024

RETRANGE:
.BLKL 2 ;reserve two longwords

REMAINDER:
.LONG 468

LATCHREG:
.LONG 0

REG3'AL:
.LONG 0

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$10750DEF

52

.PSECT CODE ,EXE,NOWRT

.ENTRY PSGMAP AM<>

VBN1 = <10750$ALUBOSP+AO767724>@-9

Create and map page frame section.
$CRMPSC_S -

INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$MWRT!SEC$MPFNMAP!SEC$MEXPREG,-
PAGCNT = #1,-
VBN = #<10750$ALUBOSP+AO767724>@-9

$EXIT_S
.END PSGMAP

DRA 1 :[THOMPSON.PSG]PSG_MIXER.MAR;6

AUTHOR: MICHAEL W. THOMPSON
DATE : 17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG) mixer control I/O
enable. (register 7)

This is a FORTRAN callable macro subroutine that:

Calling format: CALL PSG_MIXER (PSGNUM,INIXERMASK)

Selects the PSG1 or PSG2 : PSGNUM (1 or 2)
Selects the noise and tone channels
to be mixed : MIXERMASK (AO1 thru AO 177)

PSG UNIBUS address:
register offset address

READ PSG 1 AO0 A0767724 'XF7EA3
WRITE PSG I A02 A0767726
LATCH PSG 1 A04 A0767730

READ PSG1 A06 A0767732
WRITE PSG1 A10 A0767734
LATCH PSG1 AG12 A0767736

.TITLE PS_G_MIXER

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$IO750DEF

53

.PSECT MAPSEC'fION,NOEXE,WRT,RD,PIC
MAPRANGE:

.LONG 1024
.LONG 1024

RETRANGE:
.BLJKL 2 ;reserve two longwords

.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:

.LONG 468
PSG_=NUM:

.LONG I
MIXER_-MASK:

.LONG 0
NAME:

.ASciD /PSGSEC/

.PSECT CODE,EXE,NOWRT

.ENTRY PSG_ MIXER, AM<R3,R4,R5,IV>

$MGBLSCS -

INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M -WRT!SEC$MEXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ; put PSG I base address in R3

MOVL, @4(AP),PSG-NUM ; get PSG number
MOVL, @8(AP),MIXERJAASK; mixer mask

CMPB #2,PSGNUM ;sel PSG1 or PSG2
BEQL PSG2

PSG 1:
MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2[R3],R5 ; put write ADDR in R5
BRW LATCH

PSG2:
MOVAB 10[R3],R4 ; put latch ADDR in R4
MOVAB 8[R3],R5 ; put write ADDR in R5

LATCH:
MOVB #7,(R4) ;select register 7
MOVB MIXER.MASK,(R5)

DONE:
BRW LATCH
RET
.END

$EXITS
.END PSGMIXER

DRAl :[THOMPSON.PSG]PSG_NOISE.MAR;7

54

AUTHOR: MICHAEL W. THOMPSON
;DATE : 17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG)

This is a FORTRAN callable macro subroutine that:

Caling format: CALL PSO_ NOISE (PSG-NUM,NOISEFREOJ

Selects the PSGI1 or PS02 :PS0_NUM (1 or 2)
Selects the NOISEFREQ :CHANNTJM (1,2,3 for A,B,C)

PSG UNIBUS address:
register offset address

READ PSGl I 00 A0767724 AXIF7EA3
WRITE PSG 1 A02 A0767726
LATCH PSG1 I "04 A0767730

READ PSGl 1 "06 A0767732
WRITE PSG1 I "010 A0767734
LATCH PSG1 I "012 A0767736

.TITLE P_5_-G...NOISE

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$IO75ODEF

.PSECT MAP_-SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:

.LONG 1024

.LONG 1024
RETRANGE:

.BLKL 2 ;reserve two longwords

.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:

.LONG 468
PSGNUM:

.LONG 1
NOISEFREQ:

.LONG 6
NAME:

.ASCID /PSGSEC/

,***BEGIN P80_NOISE *****
.PSECT CODE,EXE,NOWRT
.ENTRY PSG_NOISE, AM<R3,R4,R5,IV>

55

$MGBLSCS -INADR = MAPRANGE,-

RETADR = RETRANGE,-
FLAGS = #SEC$MWRTISEC$MEXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ;put PSG1 base address in R3

MOVL @4(AP),PSGNUM ; get PSG number
MOVL @8(AP),NOISEFREQ; get CHANNEL number

CMPB #2,PSGNUM ; sel PSG1 or PSG2
BEQL PSG2

PSG1:
MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2[R3],R5 ; put write ADDR in R5
BRW LATCH

PSG2:
MOVAB 10[R3],R4 , put latch ADDR in R4
MOVAB 8[R3],R5 ; put write ADDR in R5

LATCH:
MOVB #6,(R4) ; select register 6 (noise gen. control)
MOVB NOISE_-FREQ,(R5)

DONE:

BRW LATCH
RET
.END

$EXIT_S
.END PSGNOISE

DRA I:[THOMPSON.PSG]PSG_READ.MAR;22

AUTHOR: MICHAEL W. THOMPSON
DATE : 17 JUNE 1987

DESCRIPTION: Programmable Sound Generator (PSG) read from selected
register.

This is a FORTRAN callable macro subroutine that:

Calling format:
CALL PSGREAD (PSGNUM,REGNUM,REGVALUE)

Selects the PSG1 or PSG2 : PSGNUM (1 or 2)
Selects the register number : REG_NUM (1 thru 15)
Value returned from register : REGVALUE (0 THRU 256)

56

PSG UNIBUS address:
register offset address

READ PSGl AOO A0767724 AXlIF7EA3
WRITE PSG1 A02 A0767726
LATCH PSG1I A04 A0767730

READ PSGlI A06 A0767732
WRITE PSG 1 AO10 A0767734
LATCH PSG1l A012 A0767736

;4* ** * * * ** * * *** ****,** * *** *** *** *** * ********** ********** *** ********** **

.LIBRARY /SYS$LIBRARY:LIB.MLB/
04IO173ODEF

.PSECT MAPSECTION,NOEXE,WRT,RD,PIC
MAPRA NGE:

.LONG 1024
.LONG 1024

RETRANGE:
.BLKL 2 ;reserve two longwords

.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:

.LONG 468
PSGNUM:

.LONG I
REGNUM:

.LONG 0
RE7G VAL:

.LONG 0
NAME:

*ASCID IPSGSEC/

.PSECT CODE,EXE,NOWRT

.ENTRY PSG_READ,A'M<R3,R4,R5,IV>

S~MGBLSCS -

INADR = MAPRANGE,-
RETADR = RETRAN

57

APPENDIX F

FORTRAN PROGRAM EXAMPLE

59

c PROCESS NAME: ENG_SOUND.FOR
c AUTHOR: Michael W. Thompson
c DATE: 29 Feb. 1988

DESCRIPTION: This program is an example of using the SEG and is provided as a working
example of generating a particular sound. This program produces a sound somewhat similar to
the engiae sounds produced by helicopters. The sound produced contains a high pitched whine,
mixed with pulsating noise. Adjustments of tone and noise were done by ear. The progr,'m
examines the torque value, conditions the value for SEG, then changes the frequency component
of the noise simulating pitch blade changes that occur when changes are made with the collective
control.

c Subroutines used have the following calling conventions:

c CALL PSGRESET(PSGNUM)
c CALL PSGTONE (PSGNUM,CHANNUM,COARSEADJ,FINEADJ)
c CALL PSGNOISE (PSGNUM,NOISEFREQ)
c CALL PSG_MIXER (PSGNUM,MIXERMASK)
c CALL PSGAMP (PSG-NUM,CHANNUM,AMPLITUDE)
c CALL PSG_ENVGEN (PSGNUM,CHANNUM,COARSETUNE,FINETUNE)
c CALL PSGENVSHAPE (PSGNUM,SHAPEVAL)
c CALL PSGREAD (PSGNUM,REGNUM,REG3VAL)

c The arguments have the following significance:

c PSGNUM = PSG number (1 or 2).
c CHANNUM = tone channel number (1,2,OR 3).
c COARSEADJ = coarse tone adjust value.
c FINEADJ = fine tone adjust value.
c NOISEFREQ = noise frequency.
c MIXERMASK = bit representation for tone or noise disable = 1.
c AMPLITUDE = 16 for env. gen. control; 0- 15 for fixed amp.
c COARSE_TUNE = envelope period coarse tune adjust.
c FINETUNE = envelope period fine tune adjust.
c SHAPEVAL = envelope waveform pattern select.
c REGNUM = register number (0 - 13)
c REG_VAL = returned register value.

PROGRAM ENGSOUND

IMPLICIT INTEGER (A-Z)

REAL*4 Ti,T2,T3
REAL*4 PERCENTTORQUE,OLDTORQUE
REAL*4 TORQUE

61

INTEGER*4 PSGNUM,CHANNUM
INTEGER*4 COARSE,FINE,NOISEFREQ
INTEGER*4 AMPLITUDE,SHAPE_-VAL,COARSE_-TUNE
INTEGER*4 FINETUNE,MIXERMASK
INTEGER*4 STATUS
INTEGER*4 BINARY_-INTERVAL(2)

LOGICAL DONE

CHARACTER asciiinterval*l0/'0 0:0:0.3'40,

C... BEGIN Engine sound

C... Initialize clock
Ti = SECNDS(O.0)

c... open input data file
open (unit = 1 ,file = 'eng...sound.dat',status = 'OLD')

c... read the data
read (1,1001)PSGNUM,CHAN -NUM,

& COARS E,FINL, - OISEFREQ,
& AMPLITUDE,SHAPE_-VAL,COARSETUNE,
& FINEJTUNE,MIXERMASK

1001 format (I10)

201 CONTINUE

c Use the print statement for debugging and variable examination; otherwise omit comment.

c print *, PSGNUM,CHANNUM,
c & COARSE,FINE,NOISE.YFREQ,
c & AMPLITUDE,SHAPE3'VAL,COARSETUNE,
c & FINEJTUNE,MIXERMASK

C Call macro programs to reset registers then get X & Y values

200 continue
CALL PSGMIXER (PSG-..NUM,MIXERJAASK)

c... Set up rotor noise sound
chan num =I

ampl~itude =16
CALL PSG-.NOISE (PS0_NUM,NOISE-FREQ)
CALL PSGENVGEN (PSG-NUM,COARSETUNE,FINE-TUNE)
CALL PSGENVSHAPE (PSG..NUM,SHAPEVAL)
CALL PSG-AMP (PSG-NUM,CHANNUM,AMPLITUDE)

c... Set up tone sound
chan_num=2
amplitude =4
CALL PSG-TONE (PSGNUM,CHAN..NUM,COARSE,FINE)
CALL PSG.AMP (PSG-NUM,CHAN.NUM,AMPLITUDE)

62

c... Set up background noises
chan..numn = 3
amplitude = 7
CALL PSGAMP (PSGQNUM,CHAN_-NUM,AMPLITUDE)

1=0

c... Check the PSG r, Zisters.
print *,'
do while (I .LT. 14)

CALL PSG-READ (1,IREG.YALl)
CALL PSG-.READ (2,I,REGYAL2)
PRINT *i,'REG I' = ',REG.YAL1,REGVAL2
1=I+ 1

end do

c.. Convert ascii time to binary time
status = sys$bintimn (asciijinterval, binaryinterval)
if (.not. status) call lib$stop(%val (status))

c.. Schedule a wakeup
status = sys$schdwk (,,binaryjnterval, binary-interval)
if (.not. status) call lib$stop(%val (status))

c.. What for completion
do while (.not. done)

c.. Let's hibernate
status = sys$hiber()
if (.not. status) call lib$stop(%val(status))

c... Check the value of torque
print *,'noise freq = ',noisej'req
print *,'Enter torque as a decimal value less than 1 =

read (5, 1002)torque
1002 format (f4.2)

c... Check to see if the torque has changed.
if (oldjtorque .NE. torque) then

percent-torque = torque * 100.
if (torque .LT. .33) then
noise,_freq = percent-torque / 8.
CALL PSGNOISE (PSQ.NUM,NOISE-FREQ)

else if (torque .LT. .66) then
noisejfreq = percen-t torque / 8.
CALL PSGNOISE (PSG-NUM,NOISE-FREQ)

else ! torque .LT. .99
noisejfreq = percentorque / 8.
CALL PSGNOISE (PSGNUM,NOISE..YREQ)

end if
end if

63

okldtorque = torque

end do

CALL EXIT
STOP
END

64

